打赏

相关文章

MySQL查看日志

目录 1. 日志 1.1 错误日志 1.2 二进制日志 1.2.1 介绍 1.2.2 格式 1.2.3 查看 1.2.4 删除 1.3 查询日志 1.4 慢查询日志 1. 日志 1.1 错误日志 错误日志是 MySQL 中最重要的日志之一,它记录了当 mysqld 启动和停止时,以及服务器在运行过 程…

Ubuntu 搭建SVN服务

目录 ​ 1、安装SVN服务端 2、创建SVN版本库 3、修改SVN配置svnserve.conf 3.1 配置文件介绍 3.2 svnserve.conf配置 3.3 authz配置设置用户读写权限 3.4 passwd配置 用户名密码 4、启动SVN服务 4.1 配置开机启动 1、安装SVN服务端 sudo apt-get install subversion…

NLP自然语言处理——使用飞桨实现基于LSTM的情感分析

任务说明: 通过对电影评论历史数据分析,构建深度学习分类模型,最终完成对新的数据样本的识别分类。 任务要求: 运用神经网络算法,创建、训练、评估模型,完成对电影评论的情感分类任务。 数据集说明&#xf…

QComboBox中使用树形控件进行选择

事情是这样的,要在一个ComboBox中通过树形结构进行内容的选择。 默认的QComboBox展开是下拉的列表。因此需要定制一下。 效果就是这样的 实现上面效果的核心代码就是下面这样的 MainWindow::MainWindow(QWidget *parent) : QMainWindow(parent) { treenew…

计算机的错误计算(一百九十六)

摘要 用两个大模型计算 arccos(0.444). 结果保留 4位有效数字。两个大模型的计算结果相同,并均有误差。 例1. 计算 arccos(0.444). 结果保留 4位有效数字。 下面是与一个大模型的对话。 以上为与一大模型的对话。 下面是与另一大模型的对话。 点评: &…

均方误差损失函数(MSE)和交叉熵损失函数详解

为什么需要损失函数 前面的文章我们已经从模型角度介绍了损失函数,对于神经网络的训练,首先根据特征输入和初始的参数,前向传播计算出预测结果,然后与真实结果进行比较,得到它们之间的差值。 损失函数又可称为代价函…

Python爬虫(selenium)从网站获取信息并存入数据库(mysql)

简介: 在本篇博客中,我们将介绍如何使用Python编写一个简单的网络爬虫,从指定网站上获取图书信息,并将这些信息存入数据库。这个项目涉及到Python编程、selenium爬虫技术以及数据库操作等内容,适合对这些领域感兴趣的初…

xterm + vue3 + websocket 终端界面

xterm.js 下载插件 // xterm npm install --save xterm// xterm-addon-fit 使终端适应包含元素 npm install --save xterm-addon-fit// xterm-addon-attach 通过websocket附加到运行中的服务器进程 npm install --save xterm-addon-attach <template><div :…

手机版浏览

扫一扫体验

微信公众账号

微信扫一扫加关注

返回
顶部